p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.7Q8, (C2×C4).21C42, C4.20(C2×C42), (C22×C4).37Q8, C23.76(C2×Q8), C23.23(C4⋊C4), (C22×C4).256D4, C4.C42⋊16C2, M4(2).28(C2×C4), (C2×M4(2)).26C4, (C23×C4).219C22, (C22×C8).373C22, C2.2(M4(2).C4), C4.20(C2.C42), (C22×C4).1304C23, (C22×M4(2)).14C2, (C2×M4(2)).298C22, C22.12(C2.C42), (C2×C4).40(C4⋊C4), (C2×C8).127(C2×C4), C22.11(C2×C4⋊C4), C4.83(C2×C22⋊C4), (C2×C4).1295(C2×D4), (C2×C4).518(C22×C4), (C22×C4).255(C2×C4), (C2×C4).253(C22⋊C4), C2.15(C2×C2.C42), SmallGroup(128,470)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.7Q8
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=cde2, ab=ba, ac=ca, eae-1=ad=da, af=fa, bc=cb, bd=db, be=eb, bf=fb, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=bde3 >
Subgroups: 276 in 186 conjugacy classes, 108 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C23, C23, C23, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C22×C4, C24, C22×C8, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C4.C42, C22×M4(2), C22×M4(2), C24.7Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C2.C42, M4(2).C4, C24.7Q8
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(25 29)(27 31)
(1 17)(2 18)(3 19)(4 20)(5 21)(6 22)(7 23)(8 24)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)
(9 13)(10 14)(11 15)(12 16)(25 29)(26 30)(27 31)(28 32)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 9 7 11 5 13 3 15)(2 29 8 31 6 25 4 27)(10 22 12 20 14 18 16 24)(17 30 23 32 21 26 19 28)
G:=sub<Sym(32)| (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,7,11,5,13,3,15)(2,29,8,31,6,25,4,27)(10,22,12,20,14,18,16,24)(17,30,23,32,21,26,19,28)>;
G:=Group( (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (9,13)(10,14)(11,15)(12,16)(25,29)(26,30)(27,31)(28,32), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,9,7,11,5,13,3,15)(2,29,8,31,6,25,4,27)(10,22,12,20,14,18,16,24)(17,30,23,32,21,26,19,28) );
G=PermutationGroup([[(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(25,29),(27,31)], [(1,17),(2,18),(3,19),(4,20),(5,21),(6,22),(7,23),(8,24),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29)], [(9,13),(10,14),(11,15),(12,16),(25,29),(26,30),(27,31),(28,32)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,9,7,11,5,13,3,15),(2,29,8,31,6,25,4,27),(10,22,12,20,14,18,16,24),(17,30,23,32,21,26,19,28)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 8A | ··· | 8X |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | - | - | ||
image | C1 | C2 | C2 | C4 | D4 | Q8 | Q8 | M4(2).C4 |
kernel | C24.7Q8 | C4.C42 | C22×M4(2) | C2×M4(2) | C22×C4 | C22×C4 | C24 | C2 |
# reps | 1 | 4 | 3 | 24 | 6 | 1 | 1 | 4 |
Matrix representation of C24.7Q8 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 13 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 16 | 0 |
0 | 0 | 1 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 15 | 0 | 0 |
0 | 0 | 6 | 4 | 0 | 0 |
0 | 0 | 7 | 13 | 0 | 4 |
0 | 0 | 0 | 16 | 16 | 0 |
5 | 3 | 0 | 0 | 0 | 0 |
14 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 4 | 1 |
0 | 0 | 10 | 0 | 13 | 0 |
0 | 0 | 11 | 13 | 16 | 0 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,13,0,1,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,4,1,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,13,6,7,0,0,0,15,4,13,16,0,0,0,0,0,16,0,0,0,0,4,0],[5,14,0,0,0,0,3,12,0,0,0,0,0,0,4,0,10,11,0,0,0,0,0,13,0,0,15,4,13,16,0,0,0,1,0,0] >;
C24.7Q8 in GAP, Magma, Sage, TeX
C_2^4._7Q_8
% in TeX
G:=Group("C2^4.7Q8");
// GroupNames label
G:=SmallGroup(128,470);
// by ID
G=gap.SmallGroup(128,470);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,723,2019,248,172,4037,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=c*d*e^2,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*d*e^3>;
// generators/relations